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Preface

This monograph is a collection of methods for calculating induced
charge distributions in gas proportional detectors of conventional geometry.
These methods have been mainly taken from papers already published, in
collaboration with colleagues, by the writer, but there are also additional
notes and comments.

The task of gathering together this previously scattered work was
originally motivated by the wish for greater convenience; to have the in-
formation all in one place. There was also the satisfaction of attempting
to arrange material with a common theme in a logical and self-consistent
manner. It is hoped, however, that the final result may also be of assistance
or interest to younger colleagues working with proportional detectors, and
perhaps especially, to research students just encountering them.

Special computer programmes for field calculations are now becom-
ing more widely available, and their use is indeed necessary for tackling
irregular geometry, and most three-dimensional, problems. However for con-
ventional geometry detectors the theoretical analysis can usually be carried
through to a sufficiently late stage that such special packages become quite
unnecessary. The real advantage of employing this more analytical approach,
however, is that a fuller, more productive understanding necessarily emerges
of detector operation and of the basic physics involved.

It should be stressed that this monograph does not attempt in any
way to present a history of wire chambers or proportional detectors. It
is only a collection, restricted and specialised, of topics on induced charge
calculation. General references have been given to help the reader, and of
course previous work directly relevant to the establishment or development
of a particular calculation has been acknowledged. However the background
history of each topic has not been referenced; this would be inappropriate
in a small monograph of such limited aims. If, within these limitations, I
have unintentionally omitted to give correct priority to any research work
then I apologise to those concerned, and would be grateful to be informed.

Theoretical calculations in isolation are totally barren. It is only
in interplay with measurement and observation that they gain any mean-
ing. I am deeply grateful in this respect to my colleagues Dr. G.C. Smith
(Brookhaven National Laboratory), Dr. T.J. Harris (Leicester University)
and Dr. J.S. Gordon (V.S.W. Sci. Instr.). Their special skills and knowl-
edge have been essential in placing some experimental flesh on my theoretical
skeletons.

E. Mathieson Leicester University, England
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Chapter 1.
BASIC THEORY AND DEFINITIONS

1.1 Methods of calculating induced charge

There are essentially two different approaches to the calculation of
induced charge. The first, using the reciprocity theorem, is by far the most
useful and will be employed in most of the applications described below.
The second method, the evaluation of the surface field, has to be employed
in special circumstances.

(i) The reciprocity method

Consider the system of conductors shown in Fig. 1.1. The relation-
ship between the charges ¢; and the potential V; may be expressed in terms
of geometrical configuration coefficients ¢;; [1,2]. Thus,

3
q; = Z ci;Vj
j=1
Suppose we wish to calculate the charge ¢; induced on conductor 1 by charge
g2 on conductor 2, all conductors other than 2 being grounded. Then
@ = c12Vs and g2 = C22Va

Thus
q1 = Q2 012/022

To calculate the ratio c¢jp/coe consider now that conductor 1 is raised to
unit potential, conductor 2 is insulated and uncharged and conductor 3 is
grounded. Let P be the potential to which conductor 2 rises. Then

Figure 1.1
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0= C12 + Coo P or P = —C21/CQQ

But it is a property of the configuration coefficients that c¢;; = cj;
reen’s reciprocal theorem). Thus
G ’ ip 1 th Th

¢ = —Pq

The conductor 2 may be considered to be physically very small. That is we
may regard a positive ion of charge ¢ mathematically as conductor 2.
Thus, to summarise, the charge ¢; induced on the surface of a par-
ticular conductor by a point charge qq at (z,y, z) is equal to —go P, where P
is the potential at (z,y, z) when that conductor is at unit potential all other
conductors being grounded.
¢ = —qF (1.1)

To illustrate the great power of this simple theorem consider the
infinite parallel plate system of Fig. 1.2. If plate 1 is raised to unit potential
with plate 2 grounded then the potential at distance y is simply

P(y)=(h—y)/h

Thus, by Eqn. 1.1 the charge induced on plate 1 by a point charge gq at y is

% = —qo(1 —y/h) (1.2)

This would otherwise be a quite lengthy calculation. However note
that this particular application cannot yield the distribution of induced
charge. The surface field method would have to be used, and this would
involve summation of the field due to an infinite series of image charges.
(See however Chapter 6.)
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(ii) The surface field method

If the field E,, at the surface of a conductor can be evaluated, by
any of the standard electrostatic methods, then the induced charge density
is g F,, where ¢ is the electrical space constant. This method has been
employed below to calculate the induced charge distribution in a coaxial
chamber (Chapter 7).

1.2 Ion trajectories

In order to investigate the development with time of the induced
charge ¢;, it is necessary to follow the trajectory x(t), y(t) of the inducing
charge qo. This latter is generally a separate calculation and should not be
confused with the former. The induced charge on a particular electrode,
N say, is —qo Py(x,y) where Py(x,y) is the potential at (x,y) due to unit
potential on electrode N all other electrodes being grounded. The trajectory
x(t),y(t), however, is formed from the derivatives of the potential P(z,y),
where P(z,y) is the potential at (x,y) due to the operating potentials on
all chamber electrodes. Py(x,y) and P(z,y) may represent quite different
calculations.

The positive ion mobility 4 may usually be regarded as constant and
the velocity of the ion is given by

v =uE (1.3)

where E is the electric field due to the chamber operating voltages. Methods
of calculating ion trajectories using this formula are given in detail below
(Section 3.2)

It may sometimes be more useful to calculate directly the electrode
induced current i;(x, y) rather than induced charge ¢;(x, y). This calculation
can be represented, formally, as follows. Let the induced charge on electrode
N be —qo Py(x,y). Then the induced current is given by

dPy  dPy
a - P

where df represents an increment of path in the direction of ion motion, that
is in the direction of the applied field E. Thus

ii = —qop(En - E) (1.3)

where Eny = — grad Py. Of course calculation of i; as a function of time
also required knowledge of the ion trajectory z(t), y(t).

i = —qo v
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Figure 1.3

1.3 Induced charge and signal charge

Let the charge induced on the surface of electrode IV by point charge
qo be —qn, see Fig. 1.3. From Eqn. (1.1) —gy = —qo Py. Then the signal
charge, that is the observable charge, is —(—qy) = qn-

Thus signal charge qx and signal current iy are given by, respec-

tively,
gy = qo Pn(z,y) (1.4a)
. dPy(x,
IN — QO% (14b)

The resulting signal waveforms depend also on the signal processing of iy
(see Section 1.5 below).

Of course in proportional counters and chambers, one electrode, the
anode, receives a negative (electron) charge. This is usually assumed to
occur as a delta function of time (but for exception see comment in Section
1.5). If the ion charge is ¢ then this electron charge must have been —gqq.
Thus if electrode A is the anode of the system, the net anode signal charge
is

Qo = —Go + g4 = —qo(1 — Pa) (1.5)

If there are only two electrodes, with electrode C' enclosing electrode
A (e.g. a coaxial counter) then

da = —QO(l - PA)
e =qo — qa = qo(1 — Pa) = —qq
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1.4 Nomenclature

An attempt will be made to employ a consistent nomenclature, that
employed above, throughout these notes. Thus the inducing point charge,
positive, will be denoted by go. The induced charge on the surface of elec-
trode N will be —gy so that the signal (observable) charge is then gy. The
net charge on electrode N, will be denoted by use of lower case subscript, as
in the previous section. If the signal charge and net charge are the same (i.e.
no collected charge) then lower case subscript will generally be used. The
potential due to unit potential on electrode N, all other electrodes being
grounded, will be Py(z,y).

If these conventions are not able to be followed then special comment
will be made.

1.5 Signal processing

It is not the intention to discuss signal processing in detail in these
notes but, for completeness, some very brief observations may be made in
this introductory section. (see also Section 2.4).

If ¢,(t) or i,(t) is obtained (generally numerically) then the pro-
cessing system output may be obtained by convolution with the appropriate
system impulse response. In every case of practical interest this convolution
has to be performed numerically but, using library integration routines now
available, completely adequate accuracy can be readily achieved.

If the primary excitation is not itself a delta function, for example
due to diffusion before the avalanche or due to finite photoelectron range,
then the output waveform must be further convoluted with the primary
waveform to obtain a final result. This last procedure is required in certain
circumstances (for example if accurate knowledge of the initial slope of the
output waveform is of importance, as in pulse shape discrimination).

1.6 The avalanche charge qg

The avalanche is assumed to produce an electron charge —¢qo and
therefore also a positive ion charge ¢q. In all wire chambers it will be assumed
that the final stage of this avalanche occurs so close to the anode wire surface
that the electron component of the anode signal is negligible. (See Appendix
7 for quantitative justification.) This cannot be assumed in a parallel plate
chamber. In both wire chambers and parallel plate chambers the avalanche
electron collection time is assumed to be negligible.

Determination of the magnitude of gy in terms of the anode potential
and gas physics, that is the determination of gas gain, is a complicated
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problem that would require a further monograph to unravel. A few brief
comments to indicate how the magnitude of ¢y might be estimated are given
in Appendix 6.

1.7 Geometry limitations

Readers of this monograph are reminded that most of the problems
studied concern systems in which the electrode geometry can be regarded
as remaining constant with respect to one coordinate (the z-axis). Thus
chamber wires are normal to the  — y plane and mathematical infinitely
long. Under these conditions the potential distribution due to the electrode
potentials becomes a function of xz,y only, and hence several powerful and
well-established methods (the use of complex variables) may be used to
obtain suitable solutions.

References

1. J.C. Maxwell, A treatise on electricity and magnetism (3rd Ed.), Oxford
University Press, London, 1892.

2. W.R. Smythe, Static and dynamic electricity, McGraw-Hill, New York,
1950.
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Chapter 2.
COAXIAL GEOMETRY 1

The simple results derived below are long-established and well-known.
However it will be very convenient for later work to have collected here some
important, basic formulae.

2.1 Formulae for field, potential and capacitance [1]

Consider a coaxial chamber, with anode radius r, and cathode radius
r., length very large compared with r., anode at potential V, and with
grounded cathode, Fig. 2.1. Then the field at radius r is given by

E=2CV,/r (2.1)

where
C =1/In(r./r,)? (2.2)

The capacitance per unit length of anode is

Cl == 477'600 (23)

where ¢, is the electrical space constant.*
The potential at radius r is given by

P=V,[1—-Cln(r/r,)?] (2.4)

Figure 2.1

* 4meg = 0.1113 pF/mm
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2.2 Anode induced and net charges

Unit potential on the anode, the cathode being grounded, produces
a potential distribution, from Eqn. 2.4,

Py=1-Clu(r/r,)?

Thus if the avalanche results in a positive point charge qq at radius r then,
from Eqn. 1.1, the anode induced charge is

—qa = —q[1 — Cn(r/ry)?% (2.5)
and therefore, from Eqn. 1.5, the anode net charge is
Qo = —qoC'In(r/r,)? (2.6)
Clearly the cathode signal, and net, charge is ¢. = —q,.
That is
e = qoCIn(r/r,)? (2.7)

2.3 Time development of anode charge

The ion velocity is radial and of magnitude given by, Eqns. 1.2

and 2.1,
dr B 2uCV,

— = 2.8
dt a r (2:8)
Thus .
/ rdr =2uCV,t
or |
(r/r2)? = 1+ 4uCV,t/r? (2.9)
It is convenient to define a characteristic counter time ¢,.
to = r2/4uCV, (2.10)
Thus
(r/ra)® = 1+t/to (2.11)
and
4u(t) = —guCn(1 + t/t;) (2.12)

This functional dependence on time ¢ was obtained by Wilkinson [2]. Typical
values for C and t, for a small coaxial counter are 0.07 and 0.5 nanoseconds
respectively.
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Despite the very fast rise time of the charge pulse, as shown by
Eqn. 2.12, the ions are not collected at the cathode until a time ¢. many
orders of magnitude greater than ty. It follows from Eqn. 2.12 that

to/to = (r./ra)? — 1

The collection time ¢, may be several tens to several hundred of microsec-
onds.

At very high count rates a large counter may contain an appreciable
charge of drifting positive ions. The effects of this positive ion space charge
are described briefly in Section 3.6.

2.4 Signal processing

As a brief illustration consider the standard system shown in Fig. 2.2.
A charge-sensitive amplifier is followed by an amplifier with differentiating
time constant 77 and integrating time constant T5. (In practice T3, Ts are of
the order 0.2 to 2us.) The transfer impedance for the system is H(s) given
by
1 s 1/Ty
sCos+1/Ty s+ 1/T;

and hence the impulse response is

H(s) =

1 T
h ) = —— —t/Tl _ —t/T>
O =-c7—m )
Then it is easily shown that for counter current, from Eqn. 2.12,
i(t) = —qoC/(t + to) (2.13)
the output voltage is given by
c T
t) = qo— tto, T1) — f(t, to, T
U() quoTl—TQ{f(’O’ 1) f(’O) 2)}
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where
(t+to)/T e?

f(t,to,T) = 6_(t+t°)/T/ —dz
to/T z
Thus even in this very simple case a final analytical solution is not possible.
However the exponential integral can now be evaluated numerically to any
required degree of accuracy (with sufficient care; see Appendix 4). Special
treatment is required for T = T5, but presents no difficulties.™*
This method can be readily adapted to treat all standard signal
processing methods.

References

1. W.R. Smythe, Static and dynamic electricity, McGraw Hill, New York
1950.

2. D.H. Wilkinson, Ionisation chambers and counters, Cambridge Univer-
sity Press, Cambridge, 1950.

* If Ty =T, =T, say, then

C {t+to

= go— —t/T _
) =g { ST+ -1
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Chapter 3.

MULTIWIRE GEOMETRY 1.
Weber approximation

3.1 Introduction

The multiwire proportional chamber, developed originally by Char-
pak and his colleagues at CERN [1], has been applied over a remarkably
wide range of investigations. These have included important, central ex-
periments in high-energy physics, X-ray crystalography and astrophysics.
Further applications are still being developed.

The geometry of a conventional, symmetric multiwire chamber is
shown schematically in Fig. 3.1. As in all the multiwire geometries studied
in this monograph it is assumed that r, < s, and that the electrodes extend
mathematically to infinity normal to the x — y plane.

If it can be further assumed that the anode, cathode spacing h is
such that cosh27h/s > 1, where s is the (constant) anode wire pitch, then
the Weber approximation [2] for potential distribution may be employed
(see Appendix 1). This leads to considerable simplifications in the formal
analysis. In practice this approximation is generally useful for h 2 2s.

This chapter will develop formulae assuming that the Weber ap-
proximation is valid. There are however many important problems which
cannot be treated in this formulation, quite apart form the validity of
cosh2mh/s > 1. These include the calculation of cathode charge distri-
bution, the analysis of chambers with wire cathodes and drift regions, the
calculation of induced charge on isolated wires or particular groups of wires,
etc. These and other problems will be addressed in Chapter 4, where a
general method of approach will be described.

cathode T y

anodes v
—o— — ——e — ——o—»x

‘4—8—»

cathode

Figure 3.1
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3.2 Potential, capacitance and field formulae
3.2.1 Potential distribution. Anode at unit potential

It is shown in Appendix 1 that the potential function Py (z,y) due to
the anode in Fig. 3.1 being at unit potential, the cathodes being grounded,

is
2(cosh 2y /s — cos 2w/ s)

Py(z,y)=1—-Cln @ /5) (3.1)
where
C =1/In(r./r,)? (3.2a)
and
r. = (s/2m)e™/* (3.2b)

It is instructive to note the form of Eqn. 3.1 in the two limiting
regions.
i) z,y < s.

By expansion of the curly bracket in Eqn. 3.1, and by placing (2 +
y?)1/2 = r, it is found that

Py (r)=1-Cln(r/r,)? (3.3)

Thus, as expected, close to an anode wire, the potential has coaxial
form.
ii) cosh 2my/s > 1 then

_ 2nC

Py (y) 5

(h—lyl) (3.4)
In this case, in the main body of the chamber, the potential falls

uniformly with |y|. The field in this region, per unit anode potential, is
simply £27C/s.

3.2.2 Potential distribution. Cathode at unit potential

If the upper cathode, in Fig. 3.1, is at unit potential and the anode
wires and lower cathode are grounded then the analysis of Appendix 1 shows
that the potential function Po(x,y) is given by

y C . 2(cosh2my/s —cos2mx/s)
P ==+ —1
c(z,y) o + 5 (2714 /5)?

(3.5)

It is again interesting to note the form of Pp in the limiting regions.
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) z,y<s

ii) cosh2my/s > 1

3.2.3 Capacitance per unit length

It was shown in Section 3.2.1 that the potential close to an anode
wire has coaxial form, Eqn. 3.3. The capacitance per unit length of each
anode wire is therefore C given by

Cl = 477'600 (38)

where C has been defined in Eqn. 3.2.
Further formulae for C' will be developed, for h < s (Section 4.2),
and for the general case (Section 4.3.2).

3.2.4 Field formulae

These are obtained at once by partial differentiation of Eqn. 3.1.
Thus, for anode potential V,, the cathodes being grounded

OP, in2
B, =-V,2W — 90y~ sin 2mz /5 (3.9a)
Oz s cosh 2wy /s — cos2mx /s

0Py, ™ sinh 27y /s
E,=-V,— =2CV,— 3.9b
Y dy s cosh2my/s — cos2mx/s (3-95)

The resultant field E = (E? + Eg)% is given by
B 2C'Vaz cosh 27y /s 4 cos 2mwx /s 1/2 (3.10)

s | cosh2my/s — cos2mx/s

The two limiting regions have very simple forms
i) o,y < s E=2CV,/r coaxial field
ii) cosh2my/s>1 E,=0,E,=+27CV,/s uniform field
See, however, Section 4.3 for a further discussion of the approxima-
tion near region 1i).
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3.3 Field lines and ion trajectories

3.3.1 Field line formulae

From the analysis given in Appendix 1 it is seen that the field lines,
from the central anode wire to the cathode, are described by the expression

tanh7y/s = tanmz/s tan a (3.11)

where « is the angle, measured from the x-axis, at which a field line leaves
the anode wire surface, Fig. 3.2.

If cosh 27y /s > 1 then there is a simple linear relationship between
the coordinate in the uniform field region, zy, and a. From Eqn. 3.11

a="2 <1 - %> (3.12)

2 S

This equation is relevant when considering the effects of avalanche
angular localization [3].

If for some reason the upper cathode is not grounded but held at a
potential Vx relative to the anode potential then the analysis of Appendix 1
shows that the field line equation becomes modified to

tanhwy/:;:tanﬂa:/s-tan{a— W‘%} (3.13)
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3.3.2 Ion trajectories

In order to calculate ion trajectories as a function of time it is nec-
essary to determine the velocity components through the equations

N =¥ 14
T Wa g (3.14a)
- _ _ -V .14
5 — Ve 9 (3.14b)

In numerical calculations it is very convenient to employ normalised
quantities. Thus Eqn. 3.14 above can be written

ox’ 8PW
— 1
ot ox' (8-15a)
oy’ OPw
- =— 3.15b
ot’ oy’ ( )
where 2’ = x/s, ¥y = y/s and t' = t/T, where
Ty = s*/uVa (3.16)

Linear dimensions are normalized to the anode wire pitch s, and
times are normalized to the quantity 7. In a typical MWPC T has the
value of a few microseconds.

The numerical method employed by the writer to calculate ion tra-
jectories may be described very briefly as follows. A small path increment
is chosen, of the order 1pum but actual value depending upon the partic-
ular situation. Velocity components, and resultant velocity are calculated
according to Eqn. 3.15. From the resultant velocity components the two
spatial components of the path increment are obtained. Thus a new point
on the trajectory can be constructed. This is a very simple procedure where
accuracy clearly depends upon the initial choice of the path increment. For
normal situations adequate accuracy is easily and quickly obtained.

3.4 Ion collection times
3.4.1 Average ion collection time

Although not dependent upon the Weber approximation it is conve-
nient at this point to present a very general argument by which the average
ion collection time can be determined [4].

Consider a tube of electrical flux d¢, of unit depth along the z-axis,
and a position where the cross-sectional area is say dA, Fig. 3.3. Let the
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di

dA

\J

Figure 3.3

anode wires of the chamber each be counting at the rate n, per unit length,
generating for each event a charge qq. It will be assumed that the avalanche
events are uniformly distributed round each wire. Thus the ion current into
the tube of flux is

di = nyqodor/2m (3.17)

where da is the angular width of the tube at the surface of the wire. This
current remains constant along the tube.

Let the ion charge density at the cross-section dA be p. Then the
current through dA is pEpdA = ppdp/ey. However the flux d¢ is given, in
terms of anode voltage V,, by

d¢p = C,V,da/2m
where C is the capacitance per unit length of anode wire. Thus
di = 2uCV,pda (3.18)

where C; has been replaced by 4mweC, Eqn. 3.8. Thus equating the two
expressions for the current di, Eqns. 3.17 and 3.18, an expression for p is

obtained.
n1qo

P= 47 pCV,

Thus, remarkably, the average ion charge density p is independent of posi-
tion. Further, the derivation of Eqn. 3.19 was not specific to a particular
geometry; the result applies to both coaxial and multiwire chambers [4].

(3.19)
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Considering now the multiwire geometry of Figs 3.1 and 3.2 the
volume per unit length of each anode wire cell is 2hs. Thus the average
stored charge per unit length of cell is simply 2hsp. But the average current
per unit length of wire is n,qy. Hence the average collection time for ions is
taw = 2hsp/n1qo, or,

hs h/s

tav =——=T—%
2ruCV, YorC

(3.20)
where Ty = s?/uV,.

This is a useful, general result and important in considering the
reduction in pulse height in MWPCs due to high count rates. (See Section
3.6)

In a typical small chamber ¢,, is of the order 50us.

3.4.2 Minimum ion collection time

In the present approximation, cosh27h/s > 1, a simple analytical
expression can be obtained for the minimum ion collection time, that is
when o = 7/2, Fig 3.2. In this case, since z = 0 in Eqn. 3.9,

B, =20V,” coth ¢
S S

Then

h h
dy S Y
tnin = = tanh —d
/Ta nk, 27r,uCVa/ P

Ta

B (5/77)2l coshh/s
- 2uCV, nCOSh?T?"a/S

Since coshmh/s > 1 and r, < s this last result may be written

. h/s In2
tmin = T0% (1 — 7Th/8> (3.21)

Thus, for example, for h = 2s the minimum collection time is about
11% less than the average collection time t,,.
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3.5 Anode and cathode charge waveforms

3.5.1 Coaxial region approximation

If the ions can be considered as moving in the essentially coaxial
region of the avalanche anode wire then the anode waveform can be written
down at once, from Eqns. 2.12 and 3.2. That is

4a(t) = —qoC'In(1 4 t/ty)

where C' = 1/In(r./r,)?, 7. = (8/2m)e™/* and t, = r2/4uCV,. For typical
MWPC geometry this waveform should be a useful approximation for ¢
below about one microsecond.

3.5.2 General case

If signal processing time constants are long enough that the ions
have moved from the coaxial region then, generally, the anode and cath-
ode waveforms must be constructed numerically. That is, from Eqns. 1.5
and 1.4a,

da = —qo[l — Pw(7,y)] (3.22)

qc = QOPC(xv y) (323)

where Py (z,y) and Pc(z,y) have been given in Equs 3.1 and 3.5 respec-
tively. The trajectory z(t),y(t) can be constructed using the formulae of
Section 3.3.

Because of the finite differentiating time constant that must be em-
ployed in any signal processing system, the variation of Py (z,y) with initial
angle a (Section 3.3) results in a small but significant dependence of output
pulse height on «. Quantitative evaluation of this effect has been given in
ref. [4].

In a practical situation the electron avalanche must exhibit a finite
angular spread about a centroid position «. In order then to simulate the
anode waveform a weighted ‘fan’ of ion trajectories must be employed in the
model [5,6]. This procedure becomes especially important when considering
the two cathode waveforms.

It is clear already from Eqn. 3.6 that the two induced cathode charges
will be considerably more sensitive to the initial ion angle o than the anode
charge. Quantitative evaluation of ¢.(t) from Eqn. 3.23 has indeed allowed
a measure to be made of the avalanche angular spread [5]. Examination of
the cathode pulse heights, or rise-times, allows a very clear distinction to be
made between ‘near-side’ and ‘far-side’ events.
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3.5.3 Dependence of gas gain on «

A second effect also results in a dependence of pulse height on ion
initial angle .. Because of the finite departure from a strictly coaxial field,
even close to the anode wire where the avalanche forms, the gas gain itself
is a function of «. This effect may be evaluated quantitatively as follows.

The expression for field, Eqn. 3.10, may be expanded in the region
x,y < s, retaining second order terms as well as first order terms. The

result is - ) ,
p="""a {1 - (ﬂ) cos 2a} (3.24)
S

r 3

where tana = y/x.

In order to obtain a closed formula for the gas gain, let us assume
a simple linear dependence of the Townsend coeficient ar on field. That is,
ar = B(E— E,) where B and Ej are constants. (Typically B ~ 30kV ™" and
Ey ~ 20kV/cm.) The gas gain M may be calculated from the relationship

lnM—/ aTdr:/ B(E — Ey)dr

a

where ry = 2CV,/Ey. The gas gain M, at a = 7/4 is readily shown to be
given by
In My = 2CV,B{In(ro/r,) — 1+ 14/70} (3.25)

After some manipulation, and assuming that the fractional change
AM /M, is small compared with unity, it is found that

2B <1>2(0Va)3

AM/My ~ === ( 5 ) =5

3 cos 2a (3.26)

This is a simpler formula than originally derived [4], but the depen-
dence on V3 /s* remains as before.

In reality the variation in gain with a would be rather smaller than
expressed by Eqn. 3.26 because of the finite angular spread of the avalanche.
This smoothing effect may be evaluated in the following manner. Assume
that the avalanche angular distribution can be described by a gaussian with
rms spread ¢ and total number of primaries ng. That is

_ No —(a—« )2/202

n(a) = e 0 3.27
() = (3.27)
and the average gas gain at centroid angle oy is

o0

1
My, = — nMda (3.28)

o J—_
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Eqn. 3.26 may be conveniently expressed

2 3
M = My (1 — kcos2a) where k = @( m ) (CVa)

3 FO 52
Then the result of the integration, Eqn. 3.28, may be written
(M, — M) /My = AM,, /My = —k cos 2ape 2" (3.29)

Thus the spreading of the avalanche, due to diffusion, photoelectron
range and intrinsic
avalanche processes, introduces a strong modifying factor e=2" . The effect
of a non-coaxial field is therefore quite rapidly smoothed out. For example,
if 0 = m/4 then this modifying factor is ~ 0.3.

Comparison between experimental measurement and theoretical pre-
diction of the dependence of gas gain on «g has been reported in ref. [7].
In that same report it is also demonstrated that this dependence can be
effectively suppressed by suitable geometry of the upper wire cathode.

3.6 Dependence of gas gain on count rate

It is convenient to end this chapter with some brief, but quantitative,
comments on the dependence of gas gain on count rate. Because of the
comparatively long ion collection time (tens to hundreds of microseconds), a
significant positive space charge becomes stored in a chamber when operated
at high count rates. This space charge reduces the field near the anode
wire surface and hence reduces the gas gain. This effect can be described
quantatively as follows.

Suppose, for the present argument, that a large area of chamber is
uniformly irradiated, and that each anode wire is counting at the rate n;
per unit length. Then, as shown in Section 3.4.1, the average ion charge
density in the chamber in constant, independent of position, and given by

niq

= m (330)

p

Here ¢ is the avalanche charge per count.

This positive ion space charge induces on the anode wire surfaces a
negative charge such that the wire surface is an equipotential (a zero poten-
tial superimposed, of course, on the operating voltage V,). Now provided
the anode wire radius is small compared with the other chamber dimensions
this induced charge can be considered to be uniform line charges coincident
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with the wire axes. Each line charge produces at the position of the anode
wire surface a potential —6V where +6V is the potential which would be
produced at that position in the absence of the anode wires by the space
charge. The space charge field at the wire surfaces is therefore simply that
that would be obtained by a change in operating voltage —6V. It simply
remains to relate 6V and p.

Straightforward application of Gauss’s theorem shows that uniform
charge density p in the chamber would produce, in the absence of anode
wires, a potential distribution

P 12 2
P=—(h" - 3.31
L0 - ) 331
Thus in the plane y =0
ph?
OV = — 3.32
2 (3.32)
or 2
n1q
oV = .
3uC,V, (3.33)

where C] = 4mweqC' is the capacitance per unit length of wire, Section 3.2.3.

Now it is kn